Chapter 7.2 parts $1 \& 2$
7.2 Basic properties of groups.

Notation: instead of $a * b$ we write $a b$
Th 7.5 Let G be a group
(1) identity element in G is unique (only its existence is required in the definition)
(2) if $a b=a c$ then $b=c$ $e \in G \quad e a=a e=a$

$$
b a=c a \quad b=c
$$

(3) The inverse for every element is unique

- justifies the notation a^{-1} for the inverse of a

$$
d a=a d=e
$$

Rem $b=c$ does not mean $b-c=0 \quad b=c$ means that b and c denote $b e^{-1}=e$
$\operatorname{Cor} 7.6$
(1) $(a b)^{-1}=b^{-1} a^{-1}$
(2) $\left(a^{-1}\right)^{-1}=a$

Pf $(a b)^{-1}$ is the unique inverse of $a b$

Thus if $b^{-1} a^{-1}$ is an inverse to $a b$, then $b^{-1} a^{-1}$ is the (unique) inverse for ab
meaning $b^{-1} a^{-1}=(a b)^{-1}$
It is thus sufficient to show that $\left(b^{-1} a^{-1}\right)(a b)=e \quad \$(a b)\left(b^{-1} a^{-1}\right)=e$ Indeed. $\left(b^{-1} a^{-1}\right)(a b)=b^{-1} a^{-1} a b=b^{-1}\left(a^{-1} a\right) b=b^{-1} e b=b^{-1}(e b)=b^{-1} b=e$.

Usual notation with integral powers

$$
a^{n}=\underbrace{a \ldots a \cdot}_{n \text { times }} \quad a^{-n}=\left(a^{-1}\right)^{n} \quad a^{0}=e \quad \left\lvert\, \begin{aligned}
& a \text {-an element of the group } \\
& n \text {-an integer }
\end{aligned}\right.
$$

Th7.7 Usual rules apply:

$$
a^{m} a^{n}=a^{m+n} \quad\left(a^{m}\right)^{n}=a^{m n}
$$

analogy with ring theory

Remark sometimes one uses t (addition) for group operation.

$$
\text { 百 } \quad 2.3=5 \quad 2+3=5 \quad \mid 198 \text {-table of }
$$

correspondences between mentiplicative and additive notations

Take $a \in G$, group. Consider a, a^{2}, a^{3}, \ldots
It may happen that the sequence is periodic:

$$
a^{k}=e \quad a, a^{2}, a^{3} \ldots a^{k-1}, e, a, a^{2} \ldots, a^{k-1}, e \ldots
$$

Def The order of an element $a \in G$
is the smallest positive integer k such that $a^{k}=e$
If $a^{k}=e$ never happens then we say that a has an infinite order

Th 7.8 (1) If $a \in G$ has an infinite order, then a^{k} for $k \in \Pi$ are all distinct
(2) If there exist $i, j \in \mathbb{Z}$ such that $i \neq j$ and $a^{i}=a j$ then a has finite order.

并 $\quad G=\pi \quad a=3$ $3,6,9,12, \ldots$

$$
\begin{gathered}
\mathbb{Z}_{5} \quad a=2+ \\
2,4,1,3,0, e, 2,4 \ldots
\end{gathered}
$$

$\nabla_{5} \backslash$ 203 $a=2$. $2,4,3,1,2,4 \ldots$
$\mathbb{C}^{*} \exists$ i the order of i is 4

Th 7.9 G - a group
$a \in G$ an element of order n
(1) If $a^{k}=e$, then $u \backslash k$
(2) If $a^{i}=a^{j}$, then $i \equiv j$ (mode)
(3) If $h=t d$ with $d \geqslant 1$, then a^{t} has order

Pf (1) Euclid's Lemma $k=n q+r$ Wanted: $r=0$

$$
0 \leq r<n
$$

$a^{k}=e$
$a^{n q+r}=e \quad\left(a^{n}\right)^{q} a^{r}=e$ implies $a^{r}=e$ implies $\frac{r \geq n}{o r r=0}$
(2) - simple
(3) $\left(a^{t}\right)^{d}=a^{t d}=a^{u}=e$

Is d the smallest positive integer with this property? Let k have property: $\left(a^{t}\right)^{k}=e$
the

$$
a^{t k}=e
$$

from (1): $u \backslash t k \quad t d / t k$ implies d / k implies $d \leq k$ - Yes. d is the smallest with this property.

Prop (Ger 31a) $\operatorname{det} G$ be a group, $a, b \in G$
Assume that $a b=b a$
Then $(a b)^{|a||b|}=e$.
Pf

$$
\begin{aligned}
(a b)^{|a||b|}=\underbrace{a b a b \ldots a b}_{|a||b|}=a^{|a||b|} b^{|a||b|} & =\left(a^{|a|}\right)^{|b|}\left(b^{|b|}\right)^{|a|} \\
& =e^{|b|} e^{|a|}=e
\end{aligned}
$$

Prop (Eyer 33) Let G be a group $a, b \in G$
Assume that $a b=b a$
Assume $(|a|,|b|)=1$.
Then $|a b|=|a||b|$
Pf $(a b)^{|a| l \mid}=e$ by the previous proposition
Th 7.9(1) implies that $|a b|||a|| b \mid$

The Fundamental Thu of Arithmetic allows us to write

$$
(a b)^{|a b|}=e
$$

$$
\text { nab| }=m n \text { with } \xlongequal[(m, n)=1]{\underline{m}||a|}, n| | b \mid
$$

$(a b)^{m n}=e \quad$ take it to the power $|b| / n$:

$$
\begin{aligned}
& \left((a b)^{m n}\right)^{|b| / u}=e \\
& (a b)^{m|b|}=e \\
& a^{m|b|} b^{m|b|}=e \quad b^{|b|}=e \text { implies } b^{m|b|}=\left(b^{|b|}\right)^{m}=e \\
& a^{m|b|}=e
\end{aligned}
$$

Th $7,9(1)$ implies that $|a||m| e \mid$
Since $(|a|,|b|)=1$, we conclude that $|a| \mid m$
We trave $\left.\begin{array}{l}\text { bella } \\ \text { balm }\end{array}\right\}$ implies $m=|a|$
Similarly, are derive $\quad h=|b|$.
Thins $|a b|=$ men becomes $|a b|=|a||b|$ as required.

Cor 7.10 2 et G be an abelian group.
Let $c \in G$ be an element of maximal order. $\left\{\begin{array}{l}\text { Jor every } \\ |a| \leq|c|\end{array}\right.$
Then for every $a \in G$,

$$
|a|||c|
$$

Pf Assume that there is $a \in G$ such that $|a| X \backslash c \mid$
The Jundamental Thu of Arith implies that there is a prime p such that

$$
\begin{array}{cc}
|a|=p^{r} m & |c|=p^{s} n \\
(p, m)=1 & (p, n)=1
\end{array}
$$

By Th i. $7.9(3), \quad\left|a^{m}\right|=p^{r} \quad\left|c^{p^{p}}\right|=n \quad$ Note that $\left(p^{r}, n\right)=1$
By the proposition (Eyer 33), $\quad\left|a^{w} c^{p^{s}}\right|=p^{r} n>p^{s} n=|c|$; that contradicts the maxivality of |el.

